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Abstract

The application of the minimal polynomial extrapolation (MPE) and the reduced rank ex-
trapolation (RRE) to a vector sequence obtained by the linear iterative technique z;4,; =
Az; +b, j = 1,2,..., is considered. Both methods produce a two-dimensional array of ap-
proximations s, to the solution of the system (I — A)z = b. Here s, is obtained from the
vectors z;, n < j < n+k+1. It was observed in an earlier publication by the first author that
the sequence s, ;, k£ =1,2,..., for n > 0, but fixed, possesses better convergence properties than
the sequence so 1, £ =1,2,.... A detailed theoretical explanation for this phenomenon is pro-
vided in the present work. This explanation is heavily based on approximations by incomplete
polynomials. It is demonstrated by numerical examples when the matrix A is sparse that cycling
with s, ; for n > 0, but fixed, produces better convergence rates and costs less computationally
than cycling with se;. It is also illustrated numerically with a convection-diffusion problem
that the former may produce excellent results where the latter may fail completely. As has been
shown in an earlier publication, the results produced by o1 are identical to the corresponding

results obtained by applying the Arnoldi method or GMRES to the system (I-A)z=%b
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1 Introduction

Let s be the solution to the nonsingular linear N x N system Bz = f, which we choose to write

equivalently in the possible preconditioned form
z = Az + b (1.1)
With zo picked arbitrarily, we iterate (1.1), and generate the vectors z1, 23, ..., i.e.,
zj41 = Az +b, j=0,1,... (1.2)

If r = p(A), the spectral radius of A, then the error z, ~s tends to zero practically as r" forn — oo
provide'd r<l.

In most cases of interest that occur in practice r may be very close to 1, and this causes
the sequence {z;}2, to converge very slowly. One efficient way of overcoming this problem is
to use vector extrapolation methods in conjunction with the iterative scheme in (1.2). Of the
various extrapolation methods two have proved to be especially effective, and these are the minimal
polynomial extrapolation (MPE) of Cabay and Jackson [CaJa)] and the reduced rank extrapolation
(RRE) of Eddy [Ed] and Megina [M]. A method almost identical to RRE was given earlier by Kaniel
and Stein [KStei].

Both MPE and RRE, when applied to the sequence {z;}72, produce a two-dimensional array
of approximations to s, whose entries we denote by 3n k. For given integers n > 0 and k > 1, snx

for both methods is determined from the vectors Zn,Zn41, -y En4k+1, and is of the form
: (n.k)
‘sﬂ,k = Z‘anl zn+j, (1.3)
—
such that the scalars 7}""‘) dependonz;,, n<i<n+k+1, nonlinearly, and satisfy

k
PR DY (1.4)

1=0
Thus the indices n and k of s, indicate that n iterations have been performed with the iterative
scheme in (1.2) and that MPE or RRE is being applied t0 Zn,Zn41, o0y Tndk+1, the initial vectors
Z0,Z1,-..,In_1 being discarded.

A discussion of MPE and RRE in the setting of both linear and nonlinear iterative techniques
can be found in the survey paper of Smith, Ford, and Sidi [SmFoSi}, where other related literature

is also cited. For a different approach see the paper by Sidi, Ford, and Smith [SiFoSm].



Convergence properties of MPE and RRE for sequences generated by a scheme such as (1.2)
have been studied extensively in various papers. The convergence of s, x for n — 00 is the subject of
a paper by Sidi [Si1] and of another by Sidi and Bridger [SiB)]. The first of these papers is concerned
with the case in which the matrix A in (1.2) is diagonalizable, while the second is concerned with
a defective matrix A. The behavior of s, for fixed n and increasing k is the topic of an additional
paper by Sidi [Si2]. This paper also discusses the equivalence of MPE and RRE and other related
vector extrapolation methods, as they are applied in conjunction with (1.2), with Krylov subspace
methods, as these are applied to the linear system (/- A)z = b. In particular, it is shown in [Si2] that
the vectors so ;. generated by MPE and RRE are precisely those generated by the method of Arnoldi
[Ar] (see also Saad [Saa]) and the method of generalized conjugate residuals (GCR) of Eisenstat,
Elman, and Schultz [EiElSc], respectively. (In other words, Krylov subspace methods produce
only the first rows of the arrays of approximations produced by the corresponding extrapolation
methods.) The conjugate gradient type method of Axelson [Ax], the method of Young and Jea [YJe]
that has been designated ORTHODIR, and the generalized minimum residual method (GMRES)
of Saad and Schultz [SaaSc] are all mathematically equivalent to GCR. In case the matrix I — A4
is hermitian, the method of Arnoldi and GCR are equivalent to the method of conjugate gradients
of Hestenes and Stiefel [HSti] and the method of conjugate residuals of Stiefel [Sti], respectively,
and when A is antihermitian, they are equivalent to the method of generalized conjugate gradients
(GCG) of Concus and Golub [CoGo] and Widlund {W] and to ORTHOMIN(1) of Vinsome [Vi],
respectively. It should be mentioned, though, that, unlike Krylov subspace methods that can be
used in the solution of linear systems only, MPE and RRE and other vector extrapolation methods
can be employed in the solution of nonlinear as well as linear systems. The reason for this is that
vector extrapolation methods are defined in terms of a vector sequence, and whether this sequence
arises from iterative solution of a linear or nonlinear system is irrelevant. The Krylov subspace
methods, on the other hand, make direct use of the matrix of the linear system being solved. In
addition, they are not based on any fixed point iterative method for this linear system.

In Ford and Sidi [FoSi} the existence of an interesting four-term recursion relation among the

Snk is shown. This recursion relation is of the form

Snk+l = Ankdnk + OnkSnsih=1 + (1 = Qnk = Bnk)Sns1k (1.5)

for some scalars a, x and B, .

Finally, in a recent work by Sidi [Si3] efficient and numerically stable implementations of MPE



and RRE are given. This work also contains a FORTRAN 77 program that was used in producing
the numerical results reported in Section 6 of the present work.

As mentioned in [Si3], when one applies MPE and RRE to a linear system in the so called
cycling mode (to be described later in this section) with s, x, n and k being held fixed, much better
convergence behavior is observed for even moderate values of n than for n = 0. It may also happen
that no noticeable convergence takes place for n = 0. This is a very curious phenomenon, which
we would like to try to explain in this work. It is obvious that any explanation of it would have to

-be through the analysis of snx — 3 for finite values of n and k.

We would like to emphasize that the results of (Si1] and [SiB] concerning sn,x — $ are asymptotic
in nature, i.e., they capture the true behavior of s, x for n — oo with k fixed, in an optimal way. For
example, if we assume the matrix A to be diagonalizable, and order its distinct nonzero eigenvalues
A1, Az, .., such that [Ay} > [A2] 2 -+, then, provided |Xg| > |Ak41} and zo — s has contributions
from each of the invariant subspaces of A associated with A, Az, ..., Ak, we have, for both MPE and
RRE,

$nk — 8 =0(An]") asn— oo (1.6)

Naturally, a result such as this, although good for sufficiently large n, cannot explain the behavior
of s for small or moderately large values of n and arbitrary values of k.

The results of [Si2], on the other hand, are stated in terms of inequalities, hence might be
considered appropriate for all values of n and k. For example, when the matrix A is diagonalizable,
and all the eigenvalues of I — A are real and positive, fpu: and fmi, Deng, respectively, the largest

and smallest of these eigenvalues, for both MPE and RRE,

isox = sl < Knllzo = sll, (1.7)
where
k=1 Homax
e LEoh ate o
K+ 1 Hmia
and || - || is any vector norm and K is an appropriate positive constant independent of k. This

result basically tells that ||so — s|| is smaller thax ||zo - | practically by a factor of n*. Recalling
now that s, is the result of applying MPE or RRE to the vector sequence {z,}52, starting with

z,, instead of zo, for all n and k, we can replace (1.7) by

$nk — $Il € Kn*|lza — s]l. (1.9)



This inequality provides us with an upper bound on ||sn x — s||/||zn — s||. Ultimately, however, we

would like to have an upper bound on ||{sn i — 8{|/||zo — s||. For this we make use of
zp, — 8= A"(z0 - 3) (1.10)

in 1.9), obtaining finally

[$nx — sll < K'n¥r"|zo — sl (1.11) |

where K’ is an appropriate positive constant independent of k, and r = p(A), as before.

Despite the fact that (1.9) and (1.11) hold for all n and k when A is diagonalizable and the
eigenvalues of J — A are real and positive, both of these inequalities are much too crude and
pessimistic. In addition, as has been mentioned in (Si3), and has been observed in many numerical
examples, the convergence of s, x to s is far better than suggested by both (1.9) and (1.11) when
n is even moderately large. In other words, for increasing k, better convergence rates are observed
for s, with n > 0 than for spi. Actually, this should be expected judging from the symptotic
result in (1.6), although the latter cannot be used to quantify this interesting phenomenon.

In addition to being interesting, the above mentioned phenomenon is also potentially very useful
in the following sense: Suppose MPFE or RRE is being applied in conjunction with the iterative

scheme of (1.2) in the 3 iiug mode. 'Lhis is achieved b nerforming the steps below.

Step 0. Pick zg,n, and k.
Step 1. Compute z1,22,...,Zn, ..y Intk+1 DY (1.2),
S and compute sy, ;. (1.12)

Step 2. If s, i satisfies accuracy test, stop;

{ otherwise set zg = s, &, and go to Step 1.
Doing Step 1 once is calied a cycle. Now in the cycling mode the accuracy test may be passed
bY Sax With m > 0 in fewer cycles than by sgx. Even though the number of iterations with (1.2)
isn+k+ 1 for spx as opposed to only k + 1 for sox in each cycle, the overhead caused by the
application of MPE or RRE may increase significantly the computational cost of cycling with sq .
We may thus end up paying a higher price for cycling with so i than with s, for n > 0. This
will be especially pronounced in cases where the iterative scheme in (1.2) is inexpensive, which
may come about if 4 is very sparse. It may also happen that the total number of iterations with
{1.2) will be less for cycling with s, %, » > 0, than for cycling with sg4. It may even occur that
cycling with 394 stalls numerically, whereas cycling with s, x, even with a moderate value of n, can

produce very quick convergence. All this has been observed in many numerical examples.



Our purpose in the present work is to provide a rigorous explanation of this phenomenon. We

accomplish this by deriving upper bounds for [|s, x — s|| of the form

|8k = sll < f(n, K)l|zo - sl], (1.13)

which capture the true behavior of s, quite accurately. This is done in Section 3. In Section
4 we derive some easily computable upper bounds f(n,k) for certain cases. This is accomplished
through approximate solutions to some best approximation problems by incomplete polynomials,
whose near-best qualities are verified numerically in Section 5. Finally, in Section 6 we give two
numerical examples to support all the claims that we make throughout the paper. One of these
examples involves the application of MPE or RRE to a linear system that arises from a finite
difference discretization of a two-dimensional convection-diffusion equation. The convergence of s &
for moderately large n is extremely quick in the cycling mode even when the underlying iterative
scheme is divergent, whereas s in the cycling mode stalls or is very slow at best. Cycling with
s0k using RRE produces results identical to those that are obtained from GCR(k) or its equivalent
GMRES(k), as follows from [Si2) and as mentioned in the previous section.

The examples of Section 6 and the theory given in Sections 3 and 4 thus make it clear that
vector extrapolation methods may be more flexible and may achieve better accuracy than Krylov

subspace methods, and may produce very good results also where the latter may fail completely.

2 Technical Preliminaries

In the previous section we mentioned that the approximations s,k to s, obtained from the vector

sequence {z,}72, are of the form given in (1.3) and (1.4). For MPE the scalars 7(

5 %) are defined

by the linear equations

Z(un+uun+,)7"" 0<i<k-1,
Z k) = (2.1)
whereas for RRE they are defined by

k) .
Z:(wn-{—n un+_7)7(n 0, 0 S 1} s k- 1,
1=0

Z 7 = (2:2)

-



where

ui = Az; = zy41 — 2; and w; = Ay = Az, i=0,1,.., (2.3)

and (-,-) is the Euclidean inner product on CN. These equations and ensuing determinantal
representations for s, ; were first presented in [Sil]. The determinantal representations were very
useful in the convergence analysis of s, x for n — oo with k fixed.

When the vector sequence {z;}%2, is generated by the linear iterative scheme in (1.2), we define

the residual vector r(z) associated with an arbitrary vector z by
r(z) = Az +b-1z. (2.4)
We also define the matrix C and its hermitian part Cy by
C=I-4 and Cq= -;-(c +C). (2.5)

We let || - || denote the vector l;-norm induced by the Euclidean inner product in CV, or the
operator norm induced by this vector norm. In addition, in case Cy is positive definite, we define
the vector norm || - ||" by

llzll’ = y/(z,Cuz), (2.6)

and let |} - ||’ stand for the induced operator norm as well.

It is shown that when the vector sequence {z;}S%, is generated by a linear iterative scheme
such as (1.2), snx, for both MPE and RRE, exists and is equal to s, provided k is the degree of
the minimal polynomial of the matrix A with respect to the vector un = Az, = Zpn4 — Zq. It has
been shown in [Si2] that when k is less than this degree, then s, x for RRE always exists, but sp &
for MPE does not necessarily exist. A sufficient condition for existence of s, x for MPE in this case
is that Cy be positive definite, see [Si2].

We now state a result concerning the error s, x — s that has been given in [Si2].

Theorem 2.1. For RRE
tr(sn)ll € 11Qx(C)r(zn)ll, (2.7

while for MPE, assuming that Cy is positive definite,
llsnk = sl” < LIQi(C)(za = I, (2.8)

where L is a constant given as

- 1
L=lciices ). (2.9)



In both (2.7) and (2.8), Qk(z) is an arbitrary polynomial of degree at most k that satisfies Qx(0) = 1.

The result in (2.7) follows from the analysis of GCR given in [EiElSc] and the equivalence of
RRE and GCR that is proved in [Si2). In [Si2] a unified approach is presented from which both
(2.7) and (2.8) can be obtainted simultaneously. Theorem 2.1 will be the starting point of our
analysis in the next section.

Before closing this section we mention that a result such as (1.9) can be obtained from Theorem

2.1 by replacing the right hand sides of (2.7) and (2.8) by

lIr(sa !l £ [1Q&(CI |Ir(zn)ll for RRE (2.10)

and

sk = sl € LIQ(O)I Hlzn — sll’ for MPE, (2.11)

respectively. For further details and developments, see (Si2].

3 Derivation of Upper Bounds

Theorem 3.1 is one of the main results of this section. We use the notation of Sections 1 and 2

throughout.

Theorem 3.1. Define

Tk = %ikn HA™Qx(C)l] (3.1)
and

ok = r%ianA"Qk(C)ll’, (3.2)

where Qx(z) are polynomials of degree at most k that satisfy Qix(0) = 1. Then
I7(sni)ll € Taplir(zolll for RRE (3.3)
and, provided Cy is positive definite,
|snk — |l € LT% illzo — sl' for MPE, (34)

with L as given in (2.9).



Proof. First we note that
r(z) = C(s - 2) (3.5)
and

Zn—8= A"(z9-9), forall n. (3.6)

Substituting (3.6) in (2.7) first, and using (3.5) next, we obtain
[I7(sa)ll £ 11Q&(C)A™r(z0)]| for RRE. (3.7)

Here we have also made use of the fact that A and C commute, which is a result of (2.5). The
result in (3.3) now follows from (3.7) if we also recall that the polynomial Q«(2) in Theorem 2.1 is
of degree at most k and satisfies Qx(0) = 1, but is arbitrary otherwise. The result in (3.4) can be
obtained from (2.8) in exactly the same way. O

As has been shown in (Si2], for any matrix G,
TP G
IGII' = lICi GCg * |}, (3.8)

from which we have

HGI = 1IGll if GCy = CxG,
IGII" < \/conda(Cr)||Gi| otherwise. (3.9)

Using (3.9) in (3.2), we obtain
I s=Tns if C normal,

I, < 1/condy(Cs)ln s otherwise. (3.10)

This result enables us to unify the treatments of MPE and RRE, as T & is now the only important
quantity that needs to be analyzed as a function of n and k.

It is very instructive to compare, e.g., the two bounds concerning s x for RRE that are given in
(2.10) and (3.3). We observe that the matrix A™ in (2.10) forms part of [|r(zn)ll, whereas it is part
of the operator A™Q4(C) in (3.3). It is this shift in the location of A™ that makes the difference
between the qualities of these two upper bounds.

'Hereafter we assume for simplicity that the matrix A is diagonalizable. We shall denote the

eigenvalues of A by A1, ;.. ., An, and the matrix that diagonalizes A by R, so that

A=R AR A= diag (A1, A2, ., AN). (3.11)

10



We shall also define

k
P ={q(}) = _X(:Jai/\i 1q(1) =1}, (3.12)
Theorem 3.2. Define
T7x = mip max [AFg(A)]. (3.13)
Then
Tpi =Ini=Thi ifC (or A) normal (3.14)
~and
Tox < condy(R)T;,
if C (or A) nonnormal. (3.15)
I, < condo(CLRIThs

Proof. The results above follow by substituting (2.5) and (3.11) in (3.1) and (3.2), and realizing
that the matrix A"g(A) is diagonal. We also need to use (3.8) with I’ .. The details are left to the
reader. 3

Note: It is obvious that for n > 0 the maximum in (3.13) is being considered on the nonzero A; only.

We can now combine Theorems 3.1 and 3.2, and obtain bounds in terms of I'; ;. For the sake

of completeness, these are summarized below as Theorem 3.3.

Theorem 3.3. Under the conditions of Theorem 3.2, for RRE

lIr(snadll ) Tok if C (or A) normal, (3.16)
17 (zo)ll condz(R)I;, otherwise,
and for MPE
lone =l ) LThe iy C (or 4) norme, (3.17)
llzo — sl Lcond;(C2 R) .k otherwise,

with L as given in (2.9).

It turns out that the upper bounds given by (3.16) and (3.17) are quite tight when A is normal
or when cond;(R) is small. When condz(R) is large, however, they become pessimistic. In this
case one has to go back to (3.3) and (3.4) which are still good, and try to bound ['ak and I'] ; in
a manner different from Theorem 3.2.

Finally, by applying Theorem 3.1 to cycling we obtain the following result.

11



Theorem 3.4. Let n > 0 and k > 0 be fized integers and denote by é&')k the approzimation s, i
that is obtained at the end of the ith cycle when MPE or RRE is being used in the cycling mode as
described in (1.12). Then, under the conditions of Theorem 3.1,

eI € (Tak)lir(zwa)ll for RRE (3.18)

and

sk = sll' S (LT, Y llzm = sll” for MPE, 3.19
n.k '

where z,,, is the initial vector at the beginning of the first cycle.

4 Bounds on I7};

From the definition of I}, given in (3.13) it is obvious that precise knowledge of it requires
complete information on the spectrum of A, which is not available in general. We may, however,
obtain very good bounds on [}, for n > 0 if we know that the nonzero part of the spectrum of A
is contained in a set D of the complex A-plane that does not contain 1. (If 1 is an eigenvalue of A,
the system in (1.1) is singular, contrary to our assumption in the introduction.) Then, with Py as
in (3.12),

Thi € min max|A"g(M)] = I (4.1)
If D is a domain, then, by the maximum modulus theorem for analytic functions,

Thx < T2k = min max|A"g(A)), (4:2)
where 31 denotes the boundary of D.

", general, the min-max problems of (4.1) and (4.2) cannot be solved analytically in a simple
way. When n = 0, some analytic solutions are known, however. The best known is the one for the
case in which D is a finite real interval [a, 3] with @ < 8 < 1, a being arbitrary otherwise. In this
case the optimal polynomial ¢(}) is T (g(X))/Tk(g(1)), with g(A) = (2A — a — 8)/(8 ~ a), where
T.(z) is the Chebyshev polynomial of the first kind of degree k. Consequently,

1
I = =——5—=~ (4.3)
Ti(35232)
This result can be found in, e.g., Varga [Va]. We mention in passing that the result in (1.9) can
be obtained directly from (4.3). The analytical solution of the min-max problem for D = {A: A =

i£,~3 < €< 3,3 > 0 real} has been provided recently by Freund and Ruscheweyh [FrR], who also

12



give a numerical method for the case in which D is any line segment in the complex A-plane not
containing 1.

We are not aware of any solution to the min-max problem in (4.1) that is known analytically
when n > 0. Instead of trying to solve this problem, we shall derive easily computable upper

bounds for I‘,’ik for all n and k for some sets D.
4.1. The Case D ={o,8], 0<a< <1

This is the simplest and most instructive case and we would like to analyze it in some detail.
The result that we obtain for this case will eventually show the way to obtain good bounds for I‘E'k
for other sets D as well.

We start by observing that the min-max problems in (4.1) and (4.2) are constrained best uniform
approximation problems by incomplete polynomials. The problem relevant to the present case is
the one in (4.1), which now reads

k
E:adAn+i

=0

TP, = min max . 4.4
n.k X w=lask53 ( )

=0 '

Uniform approximation on the real interval [0,1] by incomplete polynomials has been studied by
Lorentz [L] and, in a series of papers, by Saff and Varga (Saf Val, Saf Va2, Saf Va3, Saf Vad)].
The following result is similar to a corresponding result in [SafVal)] that was proved for the
interval {0,1].
Lemma 4.1. There ezists ¢ unique monic polynomial p°(A) of degree k that satisfies
max NP (N)| < max, NPV (4.5)

a<Ar<3

where p(A) is any monic polynomial of degree k. Also there ezist k+ 1 pointsty < 13 < --- < tks1,

all in [a, ], at which A"p=(}\) takes on the value maXs<igs [A"p*(A)| with alternating signs.

Proof. The assertion above follows from the fact the functions AR An+LAn+E-l form a k-
dimensional Haar subspace on [, 8] since a > 0. Then A"p(A) is simply the error incurred by ap-
proximating the function A™*+* by some function in this Haar subspace. The proof is now completed
by employing the uniqueness theorem and the alternation theprem on p.80 and p.75, respectively,

in Cheney [Ch]. We leave the details to the reader. O

13



Theorem 4.2. Let p*(A) be as in Lemma 4.1. Then the polynomial ¢*()), which is given by

(3 = EQ)

solves the min-maz problem in ({.4). Consequently,

D, = MaXagigs [A%p* ()]
mk (1)

(4.7)
Proof. Suppose there is another polynomial g(A) € P, that solves the min-max problem. Then,

necessarily,

n < n_ =
arélg%calA {RY] argg%cﬁlr\ g (M),

which irﬁph’es that the the sign of F(A) = A"¢g"(A) — A"g(A) at the points ¢; of the previous lemma
is that of A"7" (1) ai the same points. Cousequently, F(A) has at least k zeros in [a,5]. In addition,
F(1) = 0 by the fact that ¢(1) = ¢*(1) = 1. Since 1 is not in [a,f], we see that F()) vanishes
at least at k = 1 points in [a,1]. But F(A) is in the (k + 1)-dimensional Haar subspace on o, 1]
spanned by the functions A™, A"+ . A"+% and, therefore, can vanish at most k times on [a,1].
We have thus a contradiction. Therefore, ¢*(A) in (4.6) is the solution to the min-max problem.
The proof of (4.7) is now immediate. [

We shall aot attempt to determine p"(A) analytically. We could determine p*(A) numerically
bv the Remes algorithm, see [Ch], although this would not provide us with an analytical upper
round for T'} ;. Instead of doing this we shall try to give an analytical upper bound on ng in
verms of orthogonal polynomials. If we let ¢, () be the monic orthogonal polynomial of degree k

with respect to the weight function A*" on [a, 3], then we can write

D _ MaXec<i<a | AMOq k(X

I e € ‘ 4.8
& PRGN (4.8)
Next, by employing Theorem A.3 from the Appendix, we have
22, \"0ni(N)] = B7léns(B), (4.9)
so that (4.8) becomes simply
D & an léﬂk(a)l (4.10
k= [Qn.k(l)i )

We now give a heuristic argument to justify the replacement of p*(A) by ¢, x(A). First, we note

that this has come about by the replacement of the best /,-approximation problem

min a’?,(?a |[A"p(A)l, p(A) monic of degree k, (4.11)

14



by the best /;-approximation problem

1
5 H
min { / |,\"p(A)|’d,\} . () monic of degree k, (4.12)

p(}) = p*(A) and p(}) = énx()) being the solutions to the former and the latter problems, re-
spectively. Next, especially for large values of n, ®n k() has the most important characteristics
of p°()): (i) As follows from Lemma 4.1, p"()) has precisely k simple zeros in (a,B). Being the
orthogonal polynomial of degree k on {@, B], ¢n.k()) too has precisely k simple zeros on (a, 8). (i)
Since for large n the weight functions A™ in (4.11) and A" in (4.12) are much more pronounced in
a neighbourhood of 3, the zeros of both p"()) and ¢ x(A) will tend to be in a neighbourhood of 8
as well.

The'quality of the upper bound in (4.10) can be assessed by comparing it with the lower bound

that follows from Theorem A.4 in the appendix. This is surnmarized in Theorem 4.3 below.

Theorem 4.3. Tgk satisfies the inequalities

_- n‘éﬂk(ﬁ)i
oo ,Zow"’(l'/” S ST Lo (4:32)
where
8
=/ A on (APdA, =01, - (4.14)

Unfortunately, the polynomials ¢, x(A) are not available analytically, hence analytical forms for
the upper and lower bounds on ro ni are not known for this case. The source of this problem is
the fact that a > 0. Interestingly enough, if a is replaced by zero, then ®nk()) is expressible in
terms of Jacobi polynomials. In fact, On.x(A), which now is the kth orthogonal polynomial with
respect to the weight function A?" on [0, B), is a constant riultiple of P(0 2")(2/\/5 -1) by (A.4)in

the appendix. First, we observe that
rnk = nen?n ma-x ‘XIQ(A)l = I:‘n w» D'= (0,31, (4.15)

and that, for large n, T2} will not be too different from ID,. The reason for thisis that the weight
A" in the interval [0, @] is negligible compared to its average value in the interval [a, 3], hence there
cannot be a great difference between the solutions of the two min-max problems on [a, 3] and on

[0,8]. Next, by (A.2) and (A.3) in the appendix, we have, respectively,

g 2 B2n+1
2n {0,2n) _ - —— 4.
/0 3 [PRA(22/8 - 1) A= g (4.16)
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and

PL™™(23/8 - Dhes = PPV(1) = 1. (4.17)

Using (4.16) and (4.17) to make the appropriate substitutions in (4.13), we now obtain an upper
and a lower bound for I‘g;, which are expressible in terms of Jacobi polynomials, and hence are

easily computable. These are given in Theorem 4.4 below.

Theorem 4.4. I‘E"'k satisfies the inequalities

571 < D’k < B'\ .
(Thozn +2j+ DIPOM@/B - DR~ T AN/

(4.18)

By the assumption that 0 < § < 1, we have 2/8 — 1 > 1. Thus, by Theorem A.1 in the
appendix, the sequence {Pj(o'zn)(2/,3 - 1)}52, is positive and monotonically increasing. We can use
this to replace the lower bound on I'E"k by a weaker but more informative one. This is done in

Corollary 4.5 below.

Corollary 4.5. I‘E’k satisfies the following weaker form of (4.18):

1 gr <TD. < g"
Vk+ L2n+2k+ 1) PO (2/3 - 1) £ PR3 1)

(4.19)

As can be seen from (4.19), the upper and lower bounds on I‘f"k are very close to each other,
_and this implies that the upper bound it quite tight. This is so especially for moderate values of n
and k, as will be demonstrated numerically later.

For the sake of completeness, we combine the sequence of results on the upper bounds in The-

orem 4.6 below.

Theorem 4.6. T}, ,, 1"5,‘, and I'E,'k are related by the inequalities

Thx STD, < TP, < Tk, (4.20)
where
- n n+k
S - 2 . (4.21)
P(2/8-1) k [k [2n+k \j
=0 J J (1 - .5)
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Finally, we note that the upper bound f‘,,_k for 1";‘,‘ is valid for n = 0 also when the matrix A
in (1.1) has zero eigenvalues as well as positive ones. In this case the Jacobi polynomial P,Eo'z")(z)
reduces to the Legendre polynomial Pi(z). This causes the upper bound to be slightly inferior to

that obtained from the corresponding Chebyshev polynomial as in (4.3).

‘Note: Using Preposition 3 in (SafVal], and the argument in the proof of Theorem 4.2, we can
write, for n = 1 and arbitrary k and D'=[0,8],0<8<1,

oy = Tens((L=X/8 +1)
7 Tan(1=m)/B+ 1)

and
1

Tim (L =n)/B+m)

D' _
Ik =

where n = — cos(7/2(k + 1)).
4.2. The Case D=[-3,-al, 0<a< 3

Note that we have not demanded 3 < 1 for this case as 1 is not contained in D for any value of
3. The treatment of this case is identical to that of the previous case. With the interval [@,B] in
the previous case replaced by the interval [-B,—a] of the present case, Lemma 4.1 and Theorem
4.2 remain unchanged. Theorem 4.3 remains essentially the same except that ®nx(3) on the right
hand side of (4.13) now reads ¢nx(—3), and the v; have the same value as before. As for the
polyncmials orthogonal on [—3,0] with respect to the weight function A?", they are now constant

multiples of P}O'zn)(—b\/,ﬁ —1). Denoting [-3,0] by D', (+.18) and (4.19) now read, respectively,
B D < 5 (4.22)
{hoten + 25+ ) [PO™ (275 - 1)

<rP, <
]2}§ = P (—2/8 - 1)

and
1 g < I\D'k < g" .
Sk D2ns 2k + 1) | PO (g/p-1)| ~ T 1B (-2/8 - )|

(4.23)
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Similarly, (4.20) remains valid with (4.21) replaced by

t ch g (4.24)
nk = ©2n), _ ~ = . .
|P/: ( 2/8 1)| E;=o (35) (211;- k) (1 + ﬁ)J

As before, (4.23) follows from (4.22) by observing that the sequence {IP}O’g“)(—2/ﬂ - D}y is

monotonically increasing by Theorem A.l in the appendix, since —2/8 -1 < -1 for 3 > 0.
4.3. The Case D = [a,8], a<0<f<1

Since we are not able to make direct use of the theory of Haar subspaces in this case, we do not
know whether Lemma 4.1 and Theorem 4.2 have analogs. We may, however, still use the orthogonal
polynomials ¢, x(A) on [a, 3] with respect to the weight function A?". Consequently, (4.8) holds
trivially. Theorem A.3 from the appendix this time applies separately in the two subintervals {a, 0]
and [0,3). As a result, (4.13) becomes

max{|la™d. k(). |3 dnx(8)i}
'¢n.k(1)l ,

k
{B=0a)S | 6n;(VI}/v;} 1 <TE, < (4.25)

=0
with v; as given in (4.14).
Again, for arbitrary a and 3 the orthogonal polynomials @, x(A) are not known analytically, so
that the bounds in (4.25) can be given numerically only. For the case a = —~f, however, the ¢, x(A)
can be expressed in terms of Jacobi polynomials, see (A.5) in the appendix. We have,
PO (2(A/8)? - 1) if k = 2v,

onk(A) = 4.26
+) (A/B)PLOMTYD (A8 - 1) ifk=2v+1, (4:26)

i.e., ®nk(A) is an even or odd function of A, depending on whether k is even or odd, respectively.

As a result of (4.26), we obtain

Oﬂ,k(B) =1 for a.n n and k, (4:27)

Pﬁo,n—l/’) (2/ﬁ2 _ 1) (t k - 2V7

on,k(l) = .
g1 pOn+I (9782 _ 1) ifk=2v + 1,
and
8 52n*1
——— for all 3 4.29;
—— or n and j ( )



Combining all these in (4.25), we obtain
Bﬂ Bﬂ
, <D, < 2 .
(T oo(2n + 2 + Dieai(DRF2 = 7™ 7 [6ai(1)]

Since 0 < 8 < 1, 2/3% — 1 > 1. Consequently Theorem A.2 applies, and we have that the sequence

(4.30)

{n.i(1)}%2 is positive and monotonically increasing. With the help of this, we can replace (4.30)

by the weaker but more informative form

1 67\ D ﬁf\

: <TP € —. 4.31
Sk + 1)(2n + 2k + 1) [nk(1)] * = lona(1)] (#.3)
In summary,
I, <IP <Ta, (4.32)
where .
n n+
fﬂ,k = 5 1 3 ﬁ ] (4'33)
[on .k (1)l v (u) (n+p-—1/2> (1-B?)
=0 . ;
J J
with
v = L%J and 4= k—’;-lj, (4.34)

as follows from (4.28) and (A.T) and (A.8).

We note that the upper bound I, given by (4.33) and (4.34) can be improved somewhat as
follows: By the fact that |A|™ is symmetric with respect to the origin in D = (-8, /], we see that
the solution ¢*(\) of the min-max problem in (4.1) is even or odd depending on whether k is even

or odd, respectively. Thus

min Anh(A? if k = 2v,
I2, = min max |A\"g(A)] = hep, maXogrgs AR (4.35)

€PN [M<I minkep, maxpcags [AMTIR(A?)] i k=2v+ 1.

Making now the change of variable A =1, we have

rn = minsep, MaXy<r <32 |7n/2h(7)| if k= 2v, (4.36)
minxep, MaXogr<p2 |rntD2h(r)| ik =2v + 1. :
We finally employ Theorem 4.4 to obtain
n ' n
c {0.n) 1 < 1‘32, < (0.n) d
{Thzoln + 27 + 1P, 7(2/8% - 1)} P™(2/8% - 1)

n+1 n+1

8 <TI0, < 8 (4.37)

{Zi=o(n+25 + 2)[P(° n+1) 2/32 ]2} ‘50.1-1‘1,1)(2/}92 ~ 1).
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The upper bounds on I‘,?Jt can again be unified to read

ﬁn+l¢

;=0 (j) (n j' “) (1-8%)

with v and p as defined in (4.34). Comparing T4 in (4.38) with [, in (4.33), we see that the

T2, <Tax = (4.38)

former is slightly smaller than the latter.
In case @ # —(, but @ > —1, we can use the treatment involving the Jacobi polynomials to get

an upper bound on I‘E'k. For this we let 3 = max(la|,3). Then D = [a,8) C [-3,8] = D. Thus

Bn+k

ro < TP = min max |[A\*g())] <
PesTRu=min max a0V (\

v n+ —~ A2y
SNoIGET

as follows from (4.38). Here v and u are as in (4.34). Of course, this bound will be close to 2,

, (4.39)

provided |a| and 3 are sufficiently close to each other.
4.4. The Case D = {A: A= i£§,-3< €< 3, >0 real}

As before, we can immediately start using the orthogonal polynomials ¢, x(+) over D with

respect to the weight function |A>". These polynomials are given by

Pio.n—1/2)(_2(A/ﬁ)2 _ 1) if & =2v,

¢n,k(A> =
—1 (A BRI (Loa/B)2 1) ifk=2v+ 1.

(4.40)

With isis we can easily verify that (4.27) holds, (4.29) holds in the sense that v; = 82"+ /(n +j +
1/2), and (4.28) holds with the argument (2/3% — 1) replaced by (~2/53% — 1). Consequently, (4.30)
holds. In case 0 < 3 < 1. Theorem A.2 from the appendix applies, and we have that the sequence

{1¢n.;(1)1}524 is monotonically increasing. Thus (4.31) holds. Finally, (4.32) holds with

. n n+k
[hi = 3 = 5 ) (4.41)

ok (1)} - (;) <n+uj- 1/2> (14 8%y

where v and u are as given in (4.34).

Going through the arguments in the paragraph following (4.34), we can improve the bound on

I’,’Rk in this case too. In fact, (4.37) holds with the argument 2/3% — 1 replaced by —2/8% — 1. The
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new upper bounds can again be unified to read

Bn+k

rnk

' ZJ__ () (n+ #) (1+ pz);

(4.42)

4.5, The General Case

Drawing on our experience with the previous cases, we now propose to use the appropriate
orthogonal polynomials to construct upper and lower bounds for T2 nk When D is arbitrary.
Let {¢n,;(A)}20 be the sequence of polynomials orthogonal with respect to the nonnegative

weight function |A|?", in the sense
/ﬂ Ao M6 (WO = vi6i;. (4.43)

Here Q stands for D when D is a curve or a domain, or the boundary of D in case D is a domain.
As a result, dQ is the line element on if Qis a curve, or the area element if 2 is a domain. By
(4.1) and Theorem A.4 in the appendix, we have

k ,
LIRS p _ maxaeD |A"n k()]

(4.44)

where
c= / dq. (4.45)
9]

Of course, in order to determine these bounds we need to find the polynomials ¢n k(A) numerically,
possibly through the 3-term recursion relation that they satisfy. In addition, this recursion relation

needs to be determined numerically too.

Important simplifications take place when D is a line segment between a and 8, where a and 3
can be complex, in general. Of course, the complex number 1 is assumed to be outside D. Making
the change of variable A = a + elf¢, where 8 = arg (8 — a), we realize that ¢nx(A) is actually 2
real polynomial in £ orthogonal on the real interval [0,(8 - a)e"”] I with respect to the weight
function |A]?*" = |ja + ewﬂz". This weight function is either strictly monotonic on I or has only one
relative minimum there. In both cases, we can invoke Theorem A.3 from the appendix to simplify

maxxep |A"@n k()| that appears on the right hand side of (4.44). In case the weight function is
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monotonic on I, let

of 1
e it (6
B if |B!> |al.
Then
Ifeag!Anqsn.k(A)! = |6n¢n,k(é)|' (4-47)

In case the weight function is not monotonic on [,

max |A"n k(A)] = max{|a"dnk(a)l, 16" 6n k(B)]}- (4.48)

Further simplifications become possible when the origin is on the siraight line containing the line
segment D. First, assume that the origin is not in D, and let |a! < 13| without loss of generality.
When |a'[ >0 wr e Loplace o LAY By -‘"(:0'2")(?\/5 — 1), the polynomial orthogonal on the line

segment joining 0 and 3 with respect to the weight function [A|**. Thus

0. < 1" _ |B|"+* (4.49)
n.k = P(O,2n) 2 3 -1 . ) '
| k ( / )I lzf=0 k 2n+k (l—ﬁ)Jl
J J
Next, assume that a = —3 so that the origin is at the center of D. For this case, we have
N+«
rx £ , (4.50)

;.k <
D (J) (”j“) (1— 32)

where v and u are as in (4.34). Lower bounds on I‘fik can similarly be obtained with the help
of the appropriate Jacobi polynomials. We should remember, though, that 3 in (4.46)-(4.50) is a
complex number.

Finally, in cases where D is an ellipse with its semimajor axis along the real or the imaginary
axis in the A-plane, we can extend our previous results to obtain bounds on I'; , in conjunction

with Bernstein’s theorem, which is stated below.

Theorem 4.7. Let p{z) be a polynomial of degree at most k. Denote by &, the ellipse with foci at

+1, semimajor azis (7 + =) and semiminor azis }(r — 77!), where r > 1. Then

) < ip{ 2)1. 4.
r‘neagflp( )N < ,é?ﬁ’fqip( i (4.51)

As a result of this theorem, we see that if the foci of the ellipse are at c and 5,0 < a < 5 <1

orat =3 and —a,0 < a< 3,orat =3,0< 3 < 1,o0r at =i3,53 > 0, then the bounds fmk given
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in (4.21) or (4.24) or (4.38) or (4.42), respectively, need to be multiplied by r*** for some 7 > 1,
whose size depends on the size of ellipse. Of course, this will be so provided 1 lies outside the

ellipse. The thinner the ellipse, the closer 7 is to 1.

5 Appraisal of the Upper Bounds on I';;

From the definition of I'}, , given in (3.13), it is clear that the sequence {T7 )iz is monoton-

ically decreasing for all spectra. It is also clear that, when p(A) < 1, the sequence {Thi}ozo is
v monotonically decreasing. We should, therefore, make sure that the upper bounds that we obtain
for T}, , have these two characteristics. A cursory look at the expressions for Tnx given in (4.21),
(4.24), (4.38), and (4.42) for the different spectra reveals that both characteristics are possessed by
the ['» &, in general. When p(4) <1, the sequences {Tnx}3%o 2re monotonically decreasing for all
cases considered. The sequences {Tax}o are monotonically decreasing for the spectra contained
inD, =[a,8,0<a<3<], D; = [-8,-a}, 0 £ a < 6, Di =[-8,8,0< 8 <1, and
Di={x=if: =3<&< 3, 8>0real}, 8<1 Recall that [, for Dy, which is given in
(4.42), is valid for all 3 and not only for § < 1. For arbitrary §, the sequences {Tn2.}5%0 2nd
{Tr2u+1}320 for Dyq are monotonically decreasing, as follows from (4.42) and Theorem A.2 in the
appendix.

Let us first compare the Thx for the sets Di, 1 = 1,...,4. It is seen by comparing (4.21) and
(4.24) that, for a given spectral radius 5, Tax for Do is smaller and decreases more quickly than
that for D;. Similarly, for a given spectral radius 3, Tpx for Dy is smaller and decreases more
quickly than that for Ds. For a given spectral radius, [n is smallest and decreases most quickly
{for D»,.

\We would now like to demonstrate by actual computation that the bounds [, i that were
presented in Section 4 are very close to Tgk. In all of our computations we picked Dy = (0,8], D2 =
(-8,0], D3 = (-8,8], and Dy = {(A=i: =8<€< B}, all with 8 = 0.96. In all cases we also
computed the upper bounds obtained for (2.10) and (2.11) by Chebyshev polynomials, namely,

TRk < -T—(gj—;_ﬁ =T (5.1)

-0

for D =[a,8), a <8 <1, thus covering D1, D2, and Da, and

57\
rf,k <

—‘Tk(‘)l
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for D = Dy. (For Dy, D,, and Dj the inequality in (5.1) is actually an equality when n = 0 as
follows from (4.3).) As mentioned previously, these bounds do not explain the behavior of sn x for
n > 0. They are given only for the sake of comparison. Finally, we computed the lower bounds
on I‘E‘k in order to verify that the upper bounds T are indeed quite tight. All the computations
reported in this section were done on an IBM-370 computer in double precision arithmetic.
Tables 5.1-5.4 contain the lower and upper bounds for I‘E'k and the Chebyshev polynomial
bounds given in (5.1) and (5.2), for n = 0,50,100, and k = 0,2,4,...,20. Note the closeness of the
lower and upper bounds which implies that both are close to 1‘2,‘. Note also that both bounds

decrease at an increasing rate as n increases.

6 Numerical Examples

In this section we give two numerical examples that provide ample support for the claims that
were made in the previous sections. All the computations reported in this section were done on an

IBM-370 computer by using the FORTRAN 77 code given in [Si3].

Example 6.1. Consider the linear system in (1.1), where the matrix A is the .V x .V tridiagonal

matrix ) ;

c

~t

p o T

A= p o T , p,0,7 real. (6.1)

The eigenvalues of A are given by

X; = ¢+ 2,/pT cos ﬁ_—? j=12,.,N.
It is seen that for large values of NV there is a considerable amount of clustering of the eigenvalues
near ¢ + 2,/pT and o — 2,/p7.
By adjusting the parameters p,o, and 7 we can cause the spectrum of A to be real and positive,
or real and negative, or real and mixed, or pure imaginary, or complex in general. We can then test
" the upper bounds on T, given in Section 4. By Theorem 3.3, the easiest tests can be performed

with RRE when the matrix A is normal, since for this case we have

W, = (el

= - D < T
k= H"(IO)II < rn.k < rn.k <Tnk. (6.2)
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The W, x for these tests were computed in extended double precision. The reason that we used such
a high precision is that there is a considerable amount of loss of accuracy in the implementation
of RRE (or any other vector extrapolation method) to obtain ssk for large n and increasing k,
especially when the spectrum of A is real and positive. All our numerical results clearly demonstrate
that the upper bound Tnx for 1‘2 . is actually very close to Wk, hence presents a true picture of
the accuracy achieved in extrapolation with $pk, provided enough precision is used.

In our next experiment we compared cycling with s, & for n > 0 to cycling with Sox, again
using RRE. This time we did the computations in double precision only, causing round off to be
considerable. Our numerical results for this example indicate that, for a prescribed level of accuracy,
cycling with s, x, n > 0, can be much less costly than cycling with sox, even in the presence of
round off. The cost of cycling here is being measured in units of one iteration with (1.2). Since A is
tridiagonal in this example, the cost of one such iteration is 3 vector additions and 3 scalar-vector
multiplications, a total of 6 vector operations. As for the cost of computing sk, it is made up of
the cost of n + k + 1 iterations and the overhead due to the implementation of RRE. This overhead
is 3(k? + 5k + 2) vector additions, 1(k? + 5k + 1) scalar-vector multiplications, and 3(k? + 3k +2)

scalar products. For linear systems, by taking advantage of the relation
Un = A Umo1, M=1,2,00 (6.3)

we can reduce the cost by 2k vector additions. Thus, the overhead now becomes -12-(Ic2 +k+1)
vector additions, the number of scalar-vector multiplications and scalar products remaining as
before. Since one scalar product is almost equivalent to one vector addition and one scalar-vector
multiplication, we see that, rougly speaking, the overhead is k? + 2k + 2 vector additions and
k2 + 4k + 1 scalar-vector multiplications, a total of 2k? + 6k + 3 vector operations. Therefore, within
each cycle, the computation of s,k costs as much as n + k + 1 + (2k? + 6k + 3)/6 iterations for the
present example.

The computations were done for the following cases:
1. p=1=0/2, 0< 0o <1/2 In this case Dy = [0,20].

Pick ¢ = 0.48, so that D; = [0,0.96].

2. p=71=-0/2, —3 <0 <0. In this case D, = [-20,0}.
Pick 0 = —0.48, so that D, = [-0.96,0].

3.p=7< %, o = 0. In this case D3 = [=2p,2p].
Pick p = 0.48, so that D3 = [—0.96,0.96].
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4. p=-7,0<p< 3, 0=0. In this case Dy = {A =if: ~2p < £ < 2p}.
Pick p = 0.48, so that Dy = {A =if: -0.96<{< 0.96}.

Tables 6.1.1-6.1.4 provide the values of Wy ; and f'"'k for k = 0,1,...,20 with n = 80. Figures
6.1.1-6.1.4 show log,o(llr(z)Il/lI7(zwi)1)s 0 < i < n, and logyo(lr(sns)ll/lIr(zll), 1 < &k <
K, for (i) n =0 and X =10 and (i) n =50 andK = 10, versus the cost of computing the z; or the
Sax in the cycling mode. Here z,,, is the initial vector given as z;,;, = (1, 1/V72, 1/V3, s 1/\/1_\7)7'.
The vector bin (1.1) and (1.2) is chosen to be zero so that the solution s is also zero.

Now in the cases treated in Figures 6.1.1-6.1.4 the matrix A is symmetric or antisymmetric.
We next consider the case in which A is neither symmetric not antisymmetric. In the numerical
experiment below we pick ¢ = 0, p = 0.6, and 7 = 0.384 so that the spectrum of A is contained in
{~0.96,0.96]. Since A is not normal, the norms of the vectors u, = A™ug do not behave like (0.96)"
numerically. Their behavior is more like (0.984)", where 0.984 = p+ 7. To see this we simply take
ug = (1,1.... 17 and actually compute A" uo. Table 6.1.5 provides the values of W, ; and T,x for
the interval D’ = [—~0.984.0.984}, as if 4 were normal. for ¥ = 0,1,...,20, with n = 80. Although
I. & isonly a heuristic estimate, it, nevertheless, is quite realistic. (The upper bound given in (3.16)
hecomes very pessimistic in this case as condz(R) = (p/7)N-1 is of the order of 10'%. The effect of
the dimension .V on cond;(R) should be noted here. Even though p and 7 may be nearly equal, a
sufficiently large value of .V can cause condz(R) to be extremely large. This will also have an effect
on the convergence behavior of s, ). Figure 6.1.5 shows log,o(lir(z)/lir(ziai)ll), 0< i< m,and
logo([Ir(sni)ll/lr{Ziwa)ll)y 1 £ K < K, for (i) n =0 and X = 10 and (ii) n = 30 and K = 10,

versus the cost of computing the z; or the s, & in the cycling mode, exactly as in Figures 6.1.1-6.1.4.

Example 6.2. Consider the 2-dimensional convection-diffusion equation

8%u 3%y du du .
—6—13—§F+7(z—+y-é—y-)+ﬁu—fm Q,

where Q is the unit square. This equation has been used as a test problem for vector extrapolation
methods and Krylov subspace methods on nonsymmetric and/or indefinite systems. See, e.g..

Gander, Golub, and Gruntz {GaGoGr].
Let z; = iéz, 0 < i < M; +1,and y; = jéy, 0 < < My +1, where bz = 1/(M; + 1) and
fy = 1/(M,+1) for some positive integers Mz and M,. We discretize this equation by replacing all

the partial derivations at {z,. y;) by central differences. If we now order the unknowns u; j, which are
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the approximations to the corresponding u{Zi, y;),in the form wyy, Y12, s B1My» U215 Y22, ooy U2My s -0y
UM1) UM;20 0 UM My then we obtain a linear system of equations with a block tridiagonal matrix.
If 3 = 0 = v, then we have the usual 5.point discretization scheme for Poisson’s equation, in which
case the matrix of the linear system is symmetric and positive definite. By increasing S in the
negative direction we can make the matrix less and less positive definite and ultimately cause it to
become indefinite. By picking vy # 0 we make the matrix nonsymmetric, the amount of asymmetry
being directly related to the size of v.

In our computations we picked M; = M, = 30 so that the number of unknowns is N =
M. M, = 900. We also took g = 0 as our boundary condition and f = 0, causing the solution (both
of the partial differential equation and of the difference equations) to be zero everywhere. For all
our computations we took Zin = (1,1/\/5,1/\/5,...,1/\/;\—/)T as our initial vector. The iterative
technique used is the Jacobi method. The extrapolation method used in conjunction with this
iterative technique is RRE.

I we write the linear system above as Bz = d, then B is of the form B = §1 =T, where b is a
nonzero scalar and T has zero diagonal. This being the case, the matrix of iteration for the Jacobi
method is simply A = §='T = I = §'B. By Theorem 2.4 in [Si2], the vector sox obtained by
applying MPE (RRE) to the vector sequence Io,Zy,I2,.-, Where I4y = Az; + §-1d, is equivalent
to that obtained by applying the k-step Arnoldi method (GCR = ORTHODIR = Axelson’s method
= GMRES) to the linear system (] — A)z = §~1d, starting with the vector Zo as the initial vector.
But since ] — A = §-1 B, this linear system is simply a constant multiple of Bz = d. As a result,
sox with MPE (RRE) is, in fact, the vector obtained by applying the k-step Arnoldi method (GCR
= ORTHODIR = Axelson’s method = GMRES) to the linear system Bz = d, starting with zg as
the initial vector.

In case the matrix B is of the form B = D — T, where Dis a diagonal matrix that is invertible
but D # &I for any §, and the matrix T has zero diagonal, the matrix of iteration for the Jacobi
method is A = D~'T. Again by Theorem 2.4 in [Si2] so.x obtained by applying MPE (RRE) to
the vector sequence Zo,Z1,Z2,.., Where z;41 = Az; + D~1d, is equivalent to that obtained by
applying the k-step Arnoldi method (GCR = ORTHODIR = Axelson’s method = GMRES) to the
diagonally preconditioned linear system D-YBz = D-1d, starting with the vector Zo.

In Figures 6.2.1-6.2.3 we show logyol|r(zi)ll, 0157, and log,ollr(sne)lly 1 < k< K, for 1)
n=0and K = 20 and (ii) n = 50 and K = 20, versus the cost of computing the z; or the sn in

the cycling mode, exactly as before. The cost of one iteration this time is about 10 vector operations.
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In Figure 6.2.1 we show the results obtained by picking ¥ = 100 and 8 = 0. The Jacobi method
converges for this case. In about 500 iterations the residuals decrease by as much as 10-1!. Cycling
with both 8920 and sso.20 converges for this case, although the latter produces much better results

for a prescribed amount of work.

In Figure 6.2.2 we show the results obtained by picking ¥ = 100 and 8 = —100. (In case ¥ = 0,
such a large and negative value for § will cause the matrix B to become indefinite). The Jacobi
method converges for this case too. In about 1000 iterations the residuals decrease by as much as
10-19, Cycling with sso .20 converges extremely quickly, while cycling with sg0 stalls after the first

cycle.

In Figure 6.2.3, we show the results obtained by picking v = 125 and 8 = —100. The Jacobi
method now diverzes. Cycling with sso20 converges extremely quickly, while cycling with sg.20

stalls as in the previous case.

Observing that che matrix of the linear system above is consistently ordered, we can use the
strategy chat was proposed in [Si3, Section 7] to further reduce the computational cost, reducing
the storage requirements by almost a half at the same time. According to this strategy, vector
extrapolation methods are applied to the vector sequence obtained by using the double Jacobi
iteration technique. With zg given, and A being the matrix of the Jacobi iteration method, the

double Jacobi iteration technique produces the vectors zy, 23, ..., in accordance wita

y=Az; +b
j=0.",2,....
T;s1 = Ay +b
We then expect cycling with the double Jacobi iteration using snx to produce results similar to
those produced by cycling with the (single) Jacobi iteration using szn,2k- Obviously, the number
of single Jacobi iterations actually performed in both cases is almost the same, although the com-
pufationa.l cost and storage requirements for it are much lower with the double Jacobi iteration

technique.

Figares 6.2.4-6.2.6 show logol[r(z.)]l, 0 < i < n, logyelir(salll, 1 Sk S K, for (i) n =0 and

28



K =10 and (ii) n = 25 and K = 10, versus the cost of computing the z; or the s, & in the cycling

mode, exactly as before.

Figures 6.2.4-6.2.6 show the results obtained by picking ¥ = 100 and 8 = 0, v = 100 and
f = -100,and ¥ = 125 and 8 = —100, respectively, as before, the conclusions being also as before.
Note that the cost of a double Jacobi iteration is twice that of a single Jacobi iteration, namely,
20 vector operations. Therefore, when comparing the costs in Figures 6.2.4-6.2.6 with the corre-

sponding costs in Figures 6.2.1-6.2.3, the former should be doubled.

Finally, we mention that for both Example 6.1 and Example 6.2, MPE can be used instead of

RRE, the results obtained being very similar.
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Appendix
1. A Collection of Useful Formulas and Results for Jacobi Polynomials

The Jacobi polynomials P,£°'B)(z) are defined by

Pl (z) = }k: (I;t?) (k?a> (z ; 1):’ (z;—l)"'i (A1)

J=0

with @ > —1 and 3 > —1. They are orthogonal with respect to the weight function w(z) =
(1-z2)*(1+z)? on [-1,1], i.e,

1
/ (1= 2)°(1 + 2 PO (2) PP (2Vdz =
-1

oa+3+1 T(k+a+1I(k+58+1)

(. , 4.2

" ok+ra+ i+l Nk+)I(k+a+3+1) (42)
where 8, is the Kronecker delta. P,E"'J)(x) are normalized such that

P = (k * a) : (A.3)

Polynomials orthogonal on [a,b] with respect to the weight function w(z) = (b- z)%(z - a)?

are
z-a
pu(z) = P9 (fz-b—_; - 1) 1 (4.4)

Polynomials orthogonal on [~1,1) with respect to the weight function w(z) = |z|?" are given
bv
POz 1y ifk =20

p;‘(I) = 2
IP‘EO'H+1/‘)(2IQ -1 ifk=2v+1.

(A.5)

The normalization condition given in (A.3) is the one that has been widely accepted in the
literature of orthogonal polynomials. Thus (A.1) - (A.3) can be found in many books. See e.g.,

[AbSteg, Chapter 22] or [Sz]. For (A.3) see [Sz, pp. 59-60].

Theorem A.l. For z > 1 or z < -1, with z fired otherwise, the sequence {|P,£°'3)(z)|}§°=0 is

monotonically increasing.

Proof. We start with the case = > 1. First, all the terms in the summation on the right hand side

of (A.1) are positive for z > 1. Next, tke jth term of P£°’B)(2) in (A.1) is strictly less than the
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corresponding term of P,Ei‘f)(:r). The result now follows. As for z < —1, we first recall that

P (=2) = (-D*PP (@), (46)
and then apply the result for z > 1, which we have already proved, to the polynomials P,Eﬁ"')(—x). o
Theorem A.2. The polynomials py(z) that are defined in (A.5) are such that, for n real and z| > 1,
or for z pure imaginary and |z] > 1, the sequence {1pe(2)1}32, is monotonically increasing. For

z pure imaginary and |z| < 1 the sequences {Ip2.(2)1}20 and {|p2.+1(z)|} 20 are monotonically

increasing.

Proof. We observe that, by proper manipulation of (A.1), px(z) can be expressed in the unified

form
i £ 0) (2553 -, an
1=0
where
u=[§] mdu=Lk—“2ilJ. (A8)

Note that both v and u are monotonically nondecreasing in k, and that one of them is always
increasing. Letting now z be real and z > 1, we see that all the terms in the summation on the
right hand side of (A.7) are positive. Next, the jth term of pi(z) in (A.7) is strictly less than
the corresponding term of pxs1(z). The result now follows for £ > 1. For z < —1, we note
that px(—z) = (—1)*pk(z), and apply the result for z > 1, which we have already proved, to the
polynomials px(—z). For the case in which z is pure imaginary, i.e.,, z = i, € real, the factor
(z* — 1)’z%-% in the jth term of pi(z) becomes i*(£2 + 1)7¢%~%. The proof for the case lz} > 1
can now be completed as before. The proof of the case lz| < 1 can be done by employing Theorem

A.lin conjunction with (A.5). O
2. A Result on Monotonic Weight Functions

Theorem A.3. Let {pa(z)}2o be the sequence of polynomials orthogonal on [a,b] for finite b with
respect to the nonnegative weight function w(z). Assume that w(z) is nondecreasing on {a,b]. Then
the functions \/w(z)|pa(z)| attain their mazimum on (a,b] forz =b. A corresponding statement

holds for any subinterval [zo,b] of [a,b] where w(z) is nondecreasing.
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This theorem is stated and proved in {Sz, p. 163, Theorem 7.2].
3. A Lower Bound for a Best Polynomial l- Approzimation Problem

Theorem A.4. Let {pn(2)}3L, be the sequence of orthogonal polynomials on a compact set 2 of

the complez z-plane with respect to the real nonnegative weight function w(z) on Q, i.e.,

/ﬂ w(2)Pm(2)Pa(2)dQ = b, (A.9)

where dQ stands for the area element if Q is a domain D, and for the line element if  is the
boundary of a domain D or an arbitrary rectifiable curve. Let ¢*(z) be the solution of the constrained

min-maz problem

. Yy . <
zqalnzzneahxl\/u(z)o(zﬂ, ¢(z) polynomial of degree < k,
subject to M(¢) = 1, (A.10)

where M is a bounded linear functional on the space of functions continous on Q. Then

k
maxy/w)o" (=)l 2 (¢ X M) e = [ an. (A.11)
z 0 Q

=

Proof. We start by observing that, for any function f(z) that is continuous on {2, we have

max|f(z)| 2 {7 [ 1/(z)Pan) . (4.12)

Letting now f(z) = Vw(z)®(z) in (A.12), where ¢(z) is a polynomial of degree at most & satisfying

M(¢) =1, and minimizing both sides of (A.12) with respect to ¢, we obtain

()] > i -1 2 1/2, .
maxly/u(2)6" () 2 i {7 [ w(2)le(=)%d0) (4.13)
Since ¢(z) is 2 polynomial of degree k, it can be written as
k
#(z) = Za;pi(z), (A.14)
1=0

- so that the minimization problem on the right hand side of (A.13) becomes
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k
minimize Y_ lail?
a, =0

k
subject to Za;M(p;) = 1. (A.15)
1=0

The solution of (A.15) can be achieved, e.g., by using the method of Lagrange multipliers, and is
given by

- Mps)
Tizo 1M (pi)I?

Combining (A.16) with (A.13) - (A.15), (A.11) follows. O

a; L 5=0,1,..,k. (A.16)

Obviously, in case Q = [a,b], a finite real interval, we have d = dz and c = b —a.
Also. if M is a point evaluation functional, i.e., M(o) = o(€) for some &, then M(p:) = pi(€) in
(A.11).
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k n=0 n =50 n =100

' FCh T T Ch T
n k rn‘k rn_k n.k r"-k rn.k rn.k Fﬂ‘k rs.k

1.00D+00 1.00D+00 1.00D+00 | 1.28D-02 1.30D-01 1.30D-01 | 1.19D-03 1.68D-02 1.69D-02
2.83D-01 7.93D-01 7.42D-01 | 6.46D-04 6.88D-03 9.64D-02 | 2.15D-05 3.13D-04 1.25D-02
1.24D-01 5.00D-01  3.80D-01 | 7.71D-05 8.66D-04 4.94D-02 | 1.24D-06 1.86D-05 6.41D-03
5.66D-02 2.77D-01 1.74D-01 | 1.30D-05 1.52D-04 2.26D-02 { 1.16D-07 1.78D-06 2.94D-03
257D-02 1.43D-01 7.79D-02 | 2.66D-06 3.25D-05 1.01D-02 | 1.42D-08 2.25D-07 1.31D-03
10| 1.16D-02 7.16D-02  3.47D-02 | 6.22D-07 7.85D-06 4.50D-03 | 2.12D-09 3.42D-08 5.85D-04
12 | 5.20D-03 3.50D-02  1.54D-02 | 1.60D-07 2.08D-06 2.00D-03 | 3.61D-10 5.97D-09 2.60D-04
14 | 2.32D-03 1.68D-02  6.85D-03 | 4.39D-08 5.88D-07 8.90D-04 | 6.85D-11 1.16D-09 1.16D-04
16 | 1.04D-03 8.00D-03 3.04D-03 | 1.28D-08 1.75D-07 3.95D-04 | 1.42D-11 2.43D-10 5.14D-05
18 | 4.62D-04 3.77D-03  1.35D-03 | 3.89D-09 5.47D-08 1.76D-04 | 3.13D-12 5.48D-11 2.28D-05
20 | 2.06D-04 1.77D-03  6.01D-04 | 1.23D-09 1.77D-08 7.81D-05 | 7.35D-13 1.31D-11 1.01D-05

0 O s N O

Table 5.1. Bounds for I‘gk when D = [0,3] with 3 = 0.96.
I’ . : the lower bound defined in (4.18),

.4 : the upper bound defined in (4.18),

IS ¢ the Chebyshev bound defined in (5.1).

Note that I'P, = ['S® for this case.
0.5 0.x



k n=20 n = 50 n = 100
-;\.k fn.k f?ﬁ -:\,k o Io% -;‘k fn.k rﬁfk

0! 1.00D+00 1.00D+00 1.00D+00 | 1.26D-02 1.30D-01 1.30D-01 | 1.19D-03 1.69D-02 1.69D-02

2| 320D-02 7.27D-02 5.55D-02 | 5.79D-07 §5.93D-06 7.21D-03 | 1.38D-08 1.97D-07 9.37D-04

4| 9.12D-04 2.78D-03  1.54D-03 | 1.44D-10 1.50D-09 2.00D-04 | 9.21D-13 1.33D-11 2.60D-05

6 | 2.56D-05 9.36D-05 4.29D-05 | 8.28D-14 881D-13 5.57D-06 | 1.48D-16 2.16D-15 7.23D-07

8 | 7.14D-07 2.99D-06 1.19D-06 | 8.27D-17 8.95D-16 1.55D-07 | 4.26D-20 6.28D-19 2.01D-08
10 | 1.99D-08 9.25D-08  3.31D-08 | 1.23D-19 1.36D-18 4.30D-09 | 1.90D-23 2.83D-22 5.58D-10
12| 5.54D-10 2.81D-09  9.19D-10 | 2.52D-22 2.82D-21 1.19D-10 | 1.20D-26 1.80D-25 1.55D-11
14 | 1.54D-11 8.41D-11  2.53D-11 | 6.62D-25 753D-24 3.31D-12 | 1.00D-29 1.52D-28 4.31D-13
16 | 4.28D-13 2.50D-12  7.09D-13 | 2.14D-27 2.48D-26 9.21D-14 | 1.07D-32 1.63D-31 1.20D-14
18.] 1.19D-14 7.35D-14  1.97D-14 | 8.28D-30 9.72D-29 2.56D-15 | 1.40D-35 2.15D-34 3.32D-16
20 | 3.31D-16 2.13D-15 5.47D-16 | 3.73D-32 4.44D-31 T7.11D-17 | 2.19D-38 3.40D-37 9.23D-18

Table 5.2. Bounds for I2, when D = [~3,0] with 3 = 0.96.
I/, : the lower bound defined in (4.22),

I'nx: the upper bound defined in (4.22),
TS : the Chebyshev bound defined in (3.1).

Note that TP, = I'§% for this case.
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k n=20 n = 50 n = 100
nk fn.k 1"55 -:z.k fn.k rg.hk f‘:;,k fn.k FS?&

0] 100D+00 1.00D+00 1.00D+00 | 1.82D-02 1.30D-01 1.30D-01 | 1.68D-03 1.69D-02 1.69D-02

21 442D.01 8.55D-01 855D-01 | 3.24D-03 2.39D-02 1.11D-01 | 1.71D-04 1.74D-03 1.44D-02

4| 241D-01 6.44D-01 5.75D-01 | 8.31D-04 6.38D-03 7.47D-02 | 2.83D-05 2.94D-04 9.70D-03

6| 1.38D-01 4.44D-01 3.45D-01 | 2.55D-04 2.03D-03 4.48D-02 | 6.02D-06 6.37D-05 5.82D-03

8 | 7.92D-02 2.90D-01 1.98D-01 | 8.78D-05 7.18D-04 2.57D-02 | 1.48D-06 1.61D-05 3.34D-03
10 | 4.54D-02 1.83D-01  1.12D-01 | 3.26D-05 2.74D-04 1.46D-02 | 4.14D-07 4.54D-06 1.89D-03
12 | 2.58D-02 1.13D-01 6.33D-02 | 1.28D-05 1.11D-04 8.22D-03 | 1.25D-07 1.39D-06 1.07D-03
14 | 1.47D-02 6.85D-02 3.56D-02 | 5.26D-06 4.65D-05 4.63D-03 | 4.01D-08 4.54D-07 6.01D-04
16 | 8.30D-03 4.15D-02  2.00D-02 | 2.23D-06 2.02D-05 2.60D-03 | 1.36D-08 1.56D-07 3.38D-04
18 | 4.69D-03 2.48D-02 1.13D-02 | 9.77D-07 9.02D-06 1.46D-03 | 4.81D-09 5.61D-08 1.90D-04
20 | 2.65D-03 1.47D-02 6.34D-03 | 4.37D-07T 4.12D-06 8.24D-04 | 1.76D-09 2.09D-08 1.07D-04

Table 5.3. Bounds for I',?k when D = [-3, 8] with 3 = 0.96.

[ . : the lower bound defined in (4.37),

Tnx : the upper hound defined in (4.37),
¢" : the Chebyshev bound defined in (5.1).

Note that I'J, = T'§ for this case.
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k n=0 n =50 n = 100
-'n,h T f?& n.k T Tl nk Tas T2

0| 1.00D+00 1.00D+00 1.00D+00 1.82D-02 1.30D-01 1.30D-01 | 1.68D-03 1.69D-02 1.69D-02

21 1.79D-01 3.15D-01 3.15D-01 | 1.66D-04 1.21D-03 4.10D-02 | 7.85D-06 7.97D-05 5.32D-03

4| 3.02D-02 6.86D-02 5.24D-02 | 2.92D-06 2.16D-05 6.80D-03 | 7.20D-08 7.38D-07 8.83D-04

6 | 4.98D-03 1.34D-02 8.48D-03 741D-08 5.59D-07 1.10D-03 | 9.72D-10 1.01D\-08 1.43D-04

8| 8.13D-04 247D-03 1.37D-03 2.42D-09 1.86D-08 1.78D-04 | 1.71D-11 1.79D-10 2.32D-05
10 | 1.32D-04 4.45D-04  2.22D-04 9.50D-11 7.42D-10 2.89D-05 | 3.71D-13 3.91D-12 3.75D-06
12 | 2.15D-05 7.85D-05  3.60D-05 4.33D-12 3.44D-11 4.67D-06 | 9.45D-15 1.00D-13 6.07D-07
14 | 3.49D-06 1.37D-05 5.82D-06 222D-13 1.79D-12 7.56D-07 | 2.76D-16 296D-15 9.82D-08
16 | 5.66D-07 2.36D-06  9.42D-07 1.26D-14 1.03D-13  1.22D-07 | 9.02D-18 9.77D-17 1.59D-08
18 | 9.17D-08  4.05D-07  1.52D-07 7.80D-16 6.49D-15 1.98D-08 | 3.26D-19 3.56D-18 2.57D-09
20| 1.49P-08 6.90D-08  2.47D-08 5.19D-17 4.38D-16 3.20D-09 | 1.29D-20 1.42D-19 4.16D-10

Table 5.4. Bounds for 1“3,‘ when D={ =i£:8L§{< B} with 3 = 0.96.

[, : the lower bound defined in (4.37) with 2/37 — 1 replaced by -2/8% -1,

Iy : the upper bound defined in (4.42),
I'Sh, : the Chebyshev bound defined in (5.2).
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k| Wy Feo.n k| Weoa Fson “ k| Wea Fao.a k| W Leo.n
o | 9.70D-03 | 382D-02 || 0 | 332004 | 382D-02 “ 0| s15D.03 | 3a3D02 || o | 3.23D04 | 3.82D-02
1| 831D04 | 492003 || 1] 122008 | 1.16D-04 || 1 | 4.94D-03 | 3.66D-02 | 1 | 2.22D-04 | 3.66D-02
2 | 962005 | 1.01D03 || 2 | 811D-09 | 693D-07 || 2 | 3.15D-04 | 4.79D03 || 2 | 2.30D-08 | 2.25D-04
3| 235D05 | 261D04 || 3| 7.72D-11 | 615D-09 || 3 | 2.72D-04 | 4.35D03 || 3 | 1.58D0s | 2.13D04
4| 679D-06 | 782D05 | « | 9.49D-13 | 7aeD-11 || 4 | 5.82D-05 | 9.46D-04 || 4 | 2.93D08 | 2.58D-06
5 | 229006 | 2.59D05 || 5| 1.43D-14 | 1.04D12 || 5 | 4.75D-0s | 891004 || 5| 1.99D-08 | 2.42D06
6 | 7.70D07 | 9.29D06 || 6 | 2.52D-16 | 1.78D-14 || 6 | 1.41D05 | 234D04 || & | 5.26D-10 | 4.33D-08
7 | 288D-07 | 3.54D06 || 7| sa1D-18 | 3.s0D-16 || 7 | 1.11D-0s | 209D04 || 7 | 3.56D-10 | «.01D-08
8 | 113007 | 1.42D06 || 8| 1.16D-19 | 780D-18 || 8 | 3.94D-06 | 66aD0s || 8 | 1.21D-11 | 9.46D-10
9 | «66D08 | s90D07 || 9 | 294D-21 | 1.93D-19 || 9 | 3.04D-06 | 6.20D05 || 9 | 8.13D-12 | 8.67D-10
10 | 1.99D08 | 2.5sD-07 || 10 | 8.13D-23 | 5.26D-21 || 10 | 1.22D-06 | 2.10D-05 || 10 | 3.35D-13 | 2.53D-11
11 | 872D09 | 1.13D-07 || 11 | 2.44D-24 | 1.55D-22 || 11 | 9.28D-c7 | 1.94D-05 || 11 | 2.24D-13 | 2.29D-11
12 | 3.93D-09 | 5.17D-08 || 12 | 7.89D-26 | 4.96D-24 || 12 | 4.07D-07 | 7.09D-06 || 12 | 1.08D-14 | 7.90D-13
13 | 182009 | 2.41D08 || 13 | 2.73D-27 | 1.69D-25 || 13 | 3.07D-07 | 6.52D-06 || 13 | 7.19D15 | 7.08D-13
14 | 8.56D-10 | 1.15D-08 || 14 | 1.00D-28 | 6.16D-27 || 14 | 1.44D-07 | 2.54D-06 || 14 | 3.96D-16 | 2.82D-14
15 | 4.11D-10 | 5.58D-09 || 15 | 3.90D-30 | 237D-28 || 15 | 1.08D-07 | 2.32D-06 || 15 | 2.62D-16 | 2.50D-14
16 | 2.01D-10 | 2.7sD-09 || 16 | 1.60D-31 | 9.64D30 || 16 | 531D-08 | 9.51D-07 || 16 [ 1.61D-17 | 1.12D.15
17 | 9.96D-11 | 1.38D-09 | 17 | 688D33 | 4.11D31 || 17 | 3.95D-08 | 8.66D-07 || 17 | 1.06D-17 | 9.86D-16
18 | 5.01D-11 | 6.98D-10 || 18 | 3.10D34 | 1.84D32 || 18 | 2.04D-08 | 3.70D07 || 18 | 8.14D-19 | 4.92D17
19 | 2.72D-11 | 3.59D-10 || 19 | 1.53D-35 | 8.59D-34 || 19 | 1.51D-08 | 3.35D-07 || 19 | 5.51D-19 | 4.28D.17
20 | 234D-11 | 186D-10 || 20 | 2.46D36 | 4.17D-35 || 20 | 8.06D-09 | 1.49D-07 || 20 | 2:33D.19 | 235D-18
Table 6.1.1 Table 6.1.2 Table 6.1.3 Table 6.1.4

Tables 6.1.1-6.1.4: Wy

conjunction with the iterative

[Ir(ss0.&)l/1Ir(z0)|l, where s, ; is computed by applying RRE in
method z;4; = Az; +b, 7 2 0, A being given as in (6.1) with

N = 1000. We take b = 0 so that the solution to z = Az + b is zero. The vector zo is picked

as (1,1/v2,1/V3, ..., 1/VN)T.

" obtained by picking

The s, and the corresponding upper bounds [, for I‘,Iak are

(i)p=r=0/2, 0 =0.48 so that D = [0,0.96] for Table 6.1.1,

(i) p=7=~0/2, ¢ = —0.48 so that D = [~0.96,0} for Table 6.1.2,
(iii) o =0, p= 1 = 0.48 so that D = [-0.96,0.96] for Table 6.1.3,
(iv)o=0, p= =7 =048sothat D = {A =if: -0.96 < £ < 0.96} for Table 6.1.4.
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Wao i 30.k
1.65D-02 | 2.75D-01
1.59D-02 | 2.71D-01
2.31D-03 | 7.46D-02
2.15D-03 | 7.28D-02
1.13D-03 | 2.70D-02
9.34D-04 | 2.62D-02
7.87D-04 | 1.13D-02
7.25D-04 | 1.09D-02
5.36D-04 | 5.16D-03
4.64D-04 | 4.95D-03
3.95D-04 | 2.51D-03
3.60D-04 | 2.40D-03
2.98D-04 | 1.28D-03
2.68D-04 | 1.22D-03
2.29D-04 | 6.73D-04
2.08D-04 | 6.39D-04
1.80D-04 | 3.65D-04
1.64D-04 | 3.46D-04
1.42D-04 | 2.03D-04
1.29D-04 | 1.92D-04
1.14D-04 | 1.15D-04

W0 00 =3 O v B W N = O |

[ S S e e e T e B o o ey
O(D@‘IQO‘AOJMHO

Table 6.1.5: Wgo x = ||7(s80.x)||/||7(z0)ll, where sqk is computed by applying RRE in conjunction
with the iterative method z;4, = Az; +b, j > 0, A being given as in (6.1) with N = 1000 and
=0, p=06,and v = 0.384. We take b =0 so that the solution to z = Az + b is zero. The
vector zo is picked as (1,1/\/5, 1/V3, ..., 1/\/4V)T. Lol is obtained by letting 8 = 0.984 in (4.38),
i.e., it is the corresponding [, x appropriate for a mixed spectrum in [—0.984,0.984], although the
spectrum of A is actually in {~0.96,0.96].
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Figure Captions:

Figures 8.1.1-8.1.4: logyo(|ir(z)ll/lir(zimin)ll), 0 < i < n, and logyo(||r(sa0)ll/lIr(ziai)l))y 1 <
k < K,for (i)n =0 and K = 10 and (ii) n = 50 and K = 10(with the exception of Figure 6.1.2,
for which n = 20 instead of n = 50), versus the cost of computing the z; or the s, x in the cycling
mode. RRE is being applied in conjunction with(1.2), where A is as given in (6.1)with N = 1000,

and b = 0 so that the solution is zero. Here z;,;, is the initial vector givenas z., = (1,1/v/2,1/

V3, 1/VN)T.

(i)p=r1=0/2, 0 = 0.48 for Figure 6.1.1,

(iiyp=r=-0/2, ¢ = —0.48 for Figure 6.1.2,
0, p =7 = 0.48 for Figure 6.1.3,

(iv)e =0, p= —+ = 0.48 for Figure 6.1.4.

Figure 6.1.5: logyo(|[r(zi)li/lIm(zim)ll), 0 £ i < 7, and logyo(lIr(sn)ll/lIr(zimddll), 1 £ &k < K,
for (i) n =0 and K = 10 and (ii) n = 50 and K = 10, versus the cost of computing the z; or the
Sn.k in the cycling mode. RRE is being applied in conjunction with (1.2), where A is given in (6.1)
with ¢ = 0, p = 0.6, and r = 0.384, and N = 1000, and b = 0 so that the solution is zero. Here

Zine is the initial vector given as z,,.(1,1/v2,1/v/3,..,1/vV N T,

Figures 6.2.1-6.2.3: log,,||r(z:)ll, 0 < 1 < n, and logyol|r(sax)ll, 1 € £ < K, for (i) n = 0 and
K =20 and {(ii) n = 50 and K = 20, versus the cost of computing the z; or the s, x in the cycling
mode. RRE is applied in conjunction with the Jacobi iteration to the linear system arising from
the discretization of the convection-diffusion equation in Example 6.2. Here the solution is zero

and z;,, = (1,1/v2,1/V/3, ..., l/vff_\’-)T is the initial vector.

(i) v =100, 3 =0 for Figure 6.2.1,
(i) v =100, 8 = —100 for Figure 6.2.2,
(iii) y = 125, 3 = =100 for Figure 6.2.3.



Figures 6.2.4-6.2.6: log;ol|r(z:)},0 £ 1 < n, and logollr(snk)ll,1 € k < K, for (i) n = 0 and
K =10 and (ii) n = 25 and K = 10, versus the cost of computing the z; or the s & in the cycling
mode. RRE is applied in conjunction with the double Jacobi iteration to the linear system arising
from the discretization of the convection-diffusion equation in Example 6.2. Here the solution is

zero and z;.;, = (1, 1/V2, 1/v3, . 1/v/N)7 is the initial vector.

(i) ¥ = 100, B = 0 for Figure 6.2.4,
(ii) ¥ = 100, 8 = —100 for Figure 6.2.5,
(iii) v = 125, B = —100 for Figure 6.2.6.
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